
Automating the Process

The amount of data that has to be reviewed in order to decide

what rules to apply is huge and can not be done by hand. An

application was developed that analyzes a logfile produced by the

VM and outputs possible parameter changes. To make this

process as straight forward to use as possible, this principle was

taken one step further: Running the entire application, analyzing

the logfile and verifying the result is done in one automated

process. This process is repeated multiple times, so that several

options can be evaluated. Optimized parameters are taken as a

basis for further improvements. A Graphical User Interface lowers

the entry barrier and makes it possible to attune the VM and the

application to each other without requiring advanced knowledge

about the VM or the Application.

Verification

The barchart shows the performance changes for benchmarks taken
from DaCapo Benchmark Suite. The benchmarks were run with
settings gathered by the automated parameter optimizer. The results
are compared to a reference run with the default VM setting.

Automatic Application Performance Improvements Through

VM Parameter Modification after Runtime Analysis

Problem Description

The Java Virtual Machine, or JVM, is needed to execute Java

bytecode. Current versions serve as a powerful runtime

environment not only for Java, but also for other languages

compiling to Java bytecode like Scala or Clojure. Features like

automatic Garbage Collection make programming easier for the

developer but also causes performance hits compared to

programming methods with manual memory management. The

VM provides powerful mechanisms to adjust itself to a given

application by changing the VM parameters. The garbage

collection policy or the memory layout can for example be

specified like this. For an unknown application, what are the

best parameters that guarantee an optimal performance?

Nicolas Neu, Charlie Gracie, Prof. Dr. André Hinkenjann,

Prof. Dr. Kenneth Kent
University of New Brunswick, Bonn-Rhein-Sieg University, IBM Canada

Faculty of Computer Science
nicolas.neu@unb.ca, charlie_gracie@ca.ibm.com, andre.hinkenjann@h-brs.de, ken@unb.ca

Project Goal

The JVM is treated as a blackbox and there is no prior knowledge

about the application. An approach was developed that maps

patterns detected in the VM log output to rules that define an

adjusted VM parameter set: If for example the VM memory is too

full most of the time, the available memory is increased for the

next run.

The Graph shows the performance improvement for the heap size
adjustment using the balanced GC policy. The green bar is the
reference value, red bars represent the ratio of the performance
change for DaCapo or SpecJVM benchmarks.

Future Work

The toolkit was designed in a way, to make it as easy as possible

to extend the existing functionality including the rules. If in the

course of the studies on the VM new rules and interdependencies

are discovered, they can be incorporated. An extension to other

languages run on the VM or even other VMs is possible as well.

